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 Motivations 
 Statistical NLP aims to do statistical 

inference for the field of NL
 Statistical inference consists of taking 

some data (generated in accordance with 
some unknown probability distribution) and 
then making some inference about this 
distribution.
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Motivations (Cont)
 An example of statistical inference is the 

task of language modeling (ex how to predict 
the next word given the previous words)

 In order to do this, we need a model of the 
language.

 Probability theory helps us finding such 
model
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Probability Theory
 How likely it is that something will 

happen
 Sample space Ω is listing of all 

possible outcome of an experiment
 Event A is a subset of Ω
 Probability function (or distribution)

[ ]0,1Ω:P →
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Prior Probability
 Prior probability: the probability  

before we consider any additional 
knowledge

)(AP
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Conditional probability
 Sometimes we have partial knowledge 

about the outcome of an experiment
 Conditional (or Posterior) Probability
 Suppose we know that event B is true
 The probability that A is true given the 

knowledge about B is expressed by

)|( BAP
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Conditional probability (cont)

)()|(

)()|(),(
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=

 Joint probability of A and B.
 2-dimensional table with a value in every cell giving 

the probability of that specific state occurring
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Chain Rule
     
          P(A,B) = P(A|B)P(B)
                     = P(B|A)P(A)

P(A,B,C,D…)  = P(A)P(B|A)P(C|A,B)P(D|A,B,C..)
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(Conditional) independence
 Two events A e B are independent of 

each other if 
   P(A) = P(A|B)
 Two events A and B are conditionally 

independent of each other given C if
    P(A|C) = P(A|B,C)
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Bayes’ Theorem
 Bayes’ Theorem lets us swap the 

order of dependence between events
 We saw that  
 Bayes’ Theorem:

P(B)
B)P(A,B)|P(A =

P(B)
A)P(A)|P(BB)|P(A =
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Example 
 S:stiff neck, M: meningitis
 P(S|M) =0.5, P(M) = 1/50,000 

P(S)=1/20
 I have stiff neck, should I worry?

0002.0
20/1

000,50/15.0
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Random Variables
 So far, event space that differs with 

every problem we look at
 Random variables (RV) X allow us to talk 

about the probabilities of numerical 
values that are related to the event 
space

ℑ→Ω
ℜ→Ω

:

:

X

X
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Expectation

{ }xXA
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 The Expectation is the mean or average of 
a RV
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Variance
 The variance of a RV is a measure of whether 

the values of the RV tend to be consistent 
over trials or to vary a lot

 σ is the standard deviation
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Back to the Language Model
 In general, for language events, P is 

unknown
 We need to estimate P, (or model M 

of the language)
 We’ll do this by looking at evidence 

about what P must be based on a 
sample of data
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Estimation of P

 Frequentist statistics

 Bayesian statistics
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Frequentist Statistics 
 Relative frequency: proportion of times an 

outcome u occurs

 C(u) is the number of times u occurs in N     
 trials

 For           the relative frequency tends to 
stabilize around some number: probability 
estimates

N
C(u)fu =

∞→N
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Frequentist Statistics (cont)
 Two different approach:

 Parametric
 Non-parametric (distribution free)
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Parametric Methods
 Assume that some phenomenon in language 

is acceptably modeled by one of the well-
known family of distributions (such 
binomial, normal)

 We have an explicit probabilistic model of 
the process by which the data was 
generated, and determining a particular 
probability distribution within the family 
requires only the specification of a few 
parameters (less training data)
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Non-Parametric Methods
 No assumption about the underlying 

distribution of the data
 For ex, simply estimate P empirically by 

counting a large number of random 
events is a distribution-free method

 Less prior information, more training 
data needed
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Binomial Distribution 
(Parametric)
 Series of trials with only two outcomes, each trial 

being independent from all the others
 Number r of successes out of n trials given that 

the probability of success in any trial is p:

rnr pp
r

n
pnrb −−





= )1(),;(
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 Continuous 
 Two parameters: mean  μ  and standard deviation 

σ

 Used in clustering

Normal (Gaussian) 
Distribution (Parametric)
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Frequentist Statistics
 D: data
 M: model (distribution P)
 Θ: parameters (es μ, σ)
 For M fixed: Maximum likelihood 

estimate: choose     such that

θ)M|P(Dargmaxθ
θ

*
,=

*
θ
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Frequentist Statistics
 Model selection, by comparing the 

maximum likelihood: choose     such 
that

*
M






= (M)θM,|DPargmax   M

*

M

*

θ)M|P(Dargmaxθ
θ

*
,=
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Estimation of P

 Frequentist statistics
 Parametric methods

 Standard distributions:
 Binomial distribution (discrete)
 Normal (Gaussian) distribution (continuous)

 Maximum likelihood 

 Non-parametric methods

 Bayesian statistics
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Bayesian Statistics
 Bayesian statistics measures degrees 

of belief
 Degrees are calculated by starting 

with prior beliefs and updating them 
in face of the evidence, using Bayes 
theorem
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Bayesian Statistics (cont)

MAP!

posteriori a maximum is MAP

M)P(M)|P(Dargmax
P(D)
M)P(M)|P(Dargmax

D)|MPargmaxM

M

M

M
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=

=
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Bayesian Statistics (cont)
 M is the distribution; for fully 

describing the model, I need both the 
distribution M and the parameters θ

θM)|θ)P(θM,|P(D

θM|θD,PM|DP

M)P(M)|P(DargmaxM
M

*

d

d

∫
∫

=

=

=

)()(

likelihood marginal the is M)|P(D
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Frequentist vs. Bayesian
 Bayesian

 Frequentist

θM)|θ)P(θM,|P(DP(M)argmaxM
M

*
d∫=

θ)M|P(Dargmaxθ
θ

*
,=

prior model the is P(M)
prior parameter the is M)|P(θ

likelihood the is θ) M,|P(D






= (M)θM,|DPargmax   M

*

M

*
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Bayesian Updating
 How to update P(M)?
 We start with a priori probability 

distribution P(M), and when a new 
datum comes in, we can update our 
beliefs by calculating the posterior 
probability P(M|D). This then 
becomes the new prior and the 
process repeats on each new datum
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Bayesian Decision Theory
 Suppose we have 2 models      and      ; we 

want to evaluate which model better 
explains some new data.

         is the most likely model, otherwise 

1M 2M

)()

)()
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Essential Information 
Theory
 Developed by Shannon in the 40s
 Maximizing the amount of information 

that can be transmitted over an 
imperfect communication channel

 Data compression (entropy)
 Transmission rate (channel capacity)
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Entropy
 X: discrete RV, p(X) 
 Entropy (or self-information)

 Entropy measures the amount of information 
in a RV; it’s the average length of the message 
needed to transmit an outcome of that 
variable using the optimal code

p(x)p(x)logH(X)H(p)
Xx

2∑
∈

−==
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Entropy (cont)







=

=

−=

∑

∑

∈

∈

p(x)
1log E

p(x)
1p(x)log

p(x)p(x)logH(X)
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information



09/15/09 35

Joint Entropy 
 The joint entropy of 2 RV X,Y is the 

amount of the information needed on 
average to specify both their values

∑∑
∈ ∈

−=
Xx y

Y)y)logp(X,p(x,Y)H(X,
Y
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Conditional  Entropy
 The conditional entropy of a RV Y given 

another X, expresses how much extra 
information one still needs to supply on 
average to communicate Y given that the 
other party knows X

( )X)|logp(YE   x)|y)logp(yp(x,

x)|x)logp(y|p(yp(x)

x)X|p(x)H(YX)|H(Y

Xx Yy

Xx Yy

Xx

−=−=

−=
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Chain Rule 

X)|H(YH(X)  Y)H(X, +=

),...XX|H(X....)X|H(X)H(X)X...,H(X 1n1n121n,1 −+++=
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Mutual Information

 I(X,Y) is the mutual information between X 
and Y. It is the reduction of uncertainty of 
one RV due to knowing about the other, or 
the amount of information one RV contains 
about the other

Y)I(X,  X)|H(Y -H(Y)  Y)|H(X-H(X)
 Y)|H(XH(Y)   X)|H(YH(X)  Y)H(X,

==
+=+=
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 Mutual Information (cont)

 I is 0 only when X,Y are independent: 
H(X|Y)=H(X)

 H(X)=H(X)-H(X|X)=I(X,X)  Entropy is the 
self-information

X)|H(Y -H(Y)  Y)|H(X-H(X)  Y)I(X, ==
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Entropy and Linguistics
 Entropy is measure of uncertainty. 

The more we know about something 
the lower the entropy. 

 If a language model captures more of 
the structure of the language, then 
the entropy should be lower.

 We can use entropy as a measure of 
the quality of our models
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Entropy and Linguistics

 H: entropy of language; we don’t know 
p(X); so..?

 Suppose our model of the language is q(X) 
 How good estimate of p(X) is q(X)?

p(x)p(x)logH(X)H(p)
Xx

2∑
∈

−==
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Entropy and Linguistic
Kullback-Leibler Divergence 
 Relative entropy or KL (Kullback-

Leibler) divergence 







=

= ∑
∈

q(X)
p(X)logE      

q(x)
p(x)p(x)log q) ||D(p

p

Xx
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Entropy and Linguistic
 Measure of how different two probability 

distributions are
 Average number of bits that are wasted by 

encoding events from a distribution p with 
a code based on a not-quite right 
distribution q

 Goal: minimize relative entropy D(p||q) to 
have a probabilistic model as accurate as 
possible
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The Noisy Channel Model
 The aim is to optimize in terms of throughput 

and accuracy the communication of messages in 
the presence of noise in the channel

 Duality between compression (achieved by 
removing all redundancy) and transmission 
accuracy (achieved by adding controlled 
redundancy so that the input can be recovered 
in the presence of noise)
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The Noisy Channel Model
 Goal: encode the message in such a way 

that it occupies minimal space while still 
containing enough redundancy to be able to 
detect and correct errors

W X W*Y
encoder decoderChannel

 p(y|x)message
input to 
channel

Output from
channel

Attempt to 
reconstruct 
message 
based 
on output
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The Noisy Channel Model
 Channel capacity: rate at which one can transmit 

information through the channel with an 
arbitrary low probability of being unable to 
recover the input from the output

  

 We reach a channel capacity if we manage to 
design an input code X whose distribution p(X) 
maximizes I between input and output

Y)I(X;max  C
p(X)

=
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Linguistics and the Noisy 
Channel Model
 In linguistic we can’t control the encoding 

phase. We want to decode the output to 
give the most likely input.

i)|p(i)p(oargmax 
p(o)

i)|p(i)p(oargmax o)|p(iargmax   I
iii

===ˆ

decoder
Noisy Channel
   p(o|I)

I O Î
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The noisy Channel Model

  p(i) is the language model and          is the 
 channel probability

 Ex: Machine translation, optical character 
recognition, speech recognition

i)|p(i)p(oargmax 
p(o)

i)|p(i)p(oargmax o)|p(iargmax   I
iii

===ˆ

i)|p(o
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