
A Preprocessing that Combines Heuristic and
Surrogate Constraint Analysis to Fix Variables in TSP

María A. Osorio, David Pinto

School of Computer Sciences, Universidad Autónoma de Puebla,
72560 Puebla, México

{aosorio, dpinto}@cs.buap.mx

Abstract. A preprocessing procedure that uses a local guided search defined in
terms of a neighborhood structure to get a feasible solution (UB) and the Osorio and
Glover[18, 20] exploiting of surrogate constraints and constraint pairing is applied to
the traveling salesman problem. The surrogate constraint is obtained by weighting the
original problem constraints by their associated dual values in the linear relaxation of
the problem. The objective function is made a constraint less or equal than a feasible
solution (UB). The surrogate constraint is paired with this constraint to obtain a com-
bined equation where negative variables are replaced by complemented variables and
the resulting constraint is used to fix variables to zero or one before solving the prob-
lem.

1 Introduction

The TSP has received great attention from the operations research and computer
science communities because is very easy to describe but very hard to solve [2]. The
problem can be formulated saying that the traveling salesman must visit every city in
his territory exactly once and then return to the starting point. Given the cost of travel
between all cities, he should plan his itinerary for a minimum total cost of the entire
tour.

Space solution for TSP is the n-cities permutation, n!. Any simple permutation
is a different solution. The optimum is the permutation that correspond to a travel
with the minimum cost. The evaluation function is very simple, because we only need
to add the cost profit associated with each segment in the itinerary, to obtain the total
cost for that itinerary.

The TSP is a relatively old problem. It was already documented in 1759, with a
different name, by Euler. The term ‘traveling salesman’ was first used in 1932 in a
German book written by a veteran traveling salesman. The TSP, in the way we know
it now, was introduced by the RAND Corporation in 1948. The Corporation’s reputa-
tion helped to make the TSP a well known and popular problem. The TSP also be-
came popular at that time due to the apparition of linear programming and the at-
tempts to solve combinatorial problems.

In 1979, it was probed that the TSP is NP-hard, a special kind of NP-complete
problems (see Garey et al, [1]). All NP problems can be reduced polynomialy to
them. It means that if one can find a solution in polynomial time to one of them, with
a deterministic procedure, it may find it for all NP and then, P=NP. Nobody has been

able to find efficient algorithms for NP-complete problems until now, and nobody has
demonstrated that such algorithms do not exist.

The TSP can be symmetric or asymmetric. In the symmetric case, departure and
return costs are the same and can be represented with an undirected graph. For the
asymmetric case, the more common one, the departure and return costs are different
and can only be represented by a directed graph. Because the symmetric problem can
be seen as a special case of the asymmetric one, this research was directed to the
asymmetric case and all references to TSP correspond to the asymmetric case.

The TSP has become a classic problem because it serves to represent a great
number of applications in real life, as the coloring sequence in textile industry, the
design of insulating material and optic filters, the impression of electronic circuits, the
planning of trajectories in robotics and many other examples that can be represented
using sequences (see Salkin [21]). Besides, it may represent a big number of combi-
natorial problems that cannot be solved in polynomial time and are NP hard.

The exponential nature of the time needed to solve this problem in an exact way
has originated, during the last decades, the development of heuristic algorithms to
approximate its optimal solution (see Gass [2]).

To relate the experience obtained in this research, we structured the present pa-
per in the following way. In section 2, we present the Integer Programming formula-
tion for TSP. In section 3, we describe the Dual Surrogate Constraint, and the Paired
Constraint in section 4. In Section 5 we present an example solved with our approach.
Section 6, shows experimental results and Section 7, the Conclusion.

2 Integer Programming Formulation

As we mentioned before, a traveling salesman must visit n cities, each exactly once.
The distance between every pair of cities ij, denoted by dij (i ≠ j), is known and may
depend on the direction traveled (i.e., dij does not necessarily equal dji). The problem
is to find a tour which commences and terminates at the salesman’s home city and
minimizes the total distance traveled.

Suppose we label the home city as city 0 and as city n+1. (Then we may think of
the salesman’s initial location as city 0 and the desired final location as city n+1).
Also, introduce the zero-one variables xij (i=0,1,…,n, j=1,…,n+1, i ≠ j), where xij = 1
if the salesman travels from city i to j, and xij = 0 otherwise. To guarantee that each
city (except city 0) is entered exactly once, we have ∑i=0,n xij = 1 (j=1,…,n+1, i ≠ j).

Similarly, to ensure that each city (except city n + 1) is left exactly once, we have
∑j=1,n+1 xij = 1 (i = 0,…,n, i ≠ j). These constraints, however, do not eliminate the
possibility of subtours or “loops”. One way of eliminating the subtour possibility is to
add the constraints αi – αj + (n+1) xij ≤ n (i = 0,…,n, j=1,…,n+1, i ≠ j).

Where αi is a real number associated with city i. To complete the model we should
minimize the total distance between the cities. An integer programming formulation
of the traveling salesman problem is to find variables xij and arbitrary real numbers αi
which

Minimize ∑ ∑ dij xij
i=0,n j=1,n+1

Subject to ∑ xij = 1 (j=1,…,n+1, i ≠ j)

i=0,n
 ∑ xij = 1 (i = 0,…,n, i ≠ j)
j=1,n+1
αi – αj + (n+1) xij ≤ n (i = 0,…,n, j=1,…,n+1, i ≠ j)
αi ≥ 0 (i = 0,…,n+1)
 xij ∈ {0,1}, (i = 0,…,n, j=1,…,n+1, i ≠ j)

Where x0,n+1=0 (since xij = 0 for i = j). This formulation originally appeared in

Tucker [22], and avoids subtours successfully, but enlarge considerable the model
that now has (n+1)2+2 variables with (n+1)2+n binaries and (n+2)+(n+1)2 constraints.

3 Dual Surrogate

As defined by Glover [4], a surrogate constraint is an inequality implied by the con-
straints of an integer program and designed to capture useful information that cannot
be extracted from the parent constraints individually, but which is nevertheless a
consequence of their conjunction.

The integer program can be written as:
Minimize cx
subject to Ax ≤ b

0 ≤ x ≤ e
and x integer
Since Ax ≤ b implies b − Ax ≥ 0, we have for a nonnegative weighting vector u

that u(b − Ax) ≥ 0 is a surrogate constraint. A value of u is selected which satisfies a
most useful or a “strongest” surrogate constraint definition as given in Glover[4,5]. It
has been shown by Glover [5] that u comprises the optimal values of the variables of
the dual linear program of the corresponding relaxed LP and that the weighting vector
in a strongest constraint consists of the optimal dual variables of the associated linear
program.

Optimality conditions for surrogate duality are the requirements that the surrogate
multiplier vector u is nonnegative, x is optimal for the surrogate problem, and x is
feasible for the primal problem. ‘Strong’ optimality conditions add the requirement of
complementary slackness. A complete derivation of this theory can be seen in Glover
[5]. The methodology proposed here relies on these fundamental results.

4 Paired Constraint

The main ideas about constraint pairing in integer programming were exposed by
Hammer et al. [9]. Based on the objective of getting bounds for most variables, the
strategy is to pair constraints in the original problem to produce bounds for some
variables.

Based on the results exposed about surrogate constraints, the dual surrogate con-
straint provides the most useful relaxation of the constraint set, and can be paired with
the objective function. If we name K = (n+1)2+(n+2), the total number of constraints
and L = (n+1)2+2 , the total number of variables, the resulting surrogate is:

 ∑ uk (akl zk) ≤ ∑ uk bk

 l = 1,…, L

 k=1,K k=1,K (1)

Where uk are the dual values for every surrogate, akl, the coefficient in row k and
column l, zk the kth variable (it may be xij or αi), bk the kth right hand side. Now, we
define

 sl = ∑ uk (akl zk) l = 1,…, L

 k=1,K (2)

 Besides, we made the objective function less or equal than a known feasible integer
solution (UB). This integer solution was obtained using a guided local search defined
in terms of neighborhood structure, where tour B is a neighbor of tour A and it can be
obtained from A by specific type of perturbation or move. It takes infinitesimal CPU
times to get a feasible tour with this procedure [14].

The paired constraint between the surrogate and the objective function will be,

∑ (cl − sl) zl ≤ UB − ∑ uk bk

 l=1,L k=1,K (3)

 To be able to use constraint (3) to fix variables in both bounds, all coefficients must
be positive or zero. We substitute yl=1– zl in the negative coefficients (cl−sl) to get
positive ones (cl−sl)’ and add the equivalent value in the right hand side. The right
hand side of the surrogate is the LP optimal solution (LB), and the right hand side of
this paired constraint becomes the difference between the best known solution, the
upper bound (UB), and the LP solution, the lower bound (LB). The resultant paired
constraint used to fix variables to zero or one, is

∑ (cl−sl) zl + ∑ (cj−sj)’ yl ≤ UB −LB

 l=1,L,cl−sl ≥0 l=1,L,cl−sl <0

(4)

 If coefficients (cl−sl) of zl are greater to the difference (UB-LB), those variables
must be zero in the integer solution; if the coefficients (cl−sl)’ of yl are greater to the
same difference, those variables must be one in the integer solution because its com-
plement, yl must be zero. Variables whose coefficients are smaller than the difference
remain in the problem. Because we depend on the gap UB−LB and LB can not be
changed because it is the LP continuous relaxed solution of the problem, a better UB

given by the best integer solution known, can increase the number of integer variables
fixed.

5 Example

We illustrate the procedure in the following example. Table 1 shows the distances for
a traveling salesman problem with 3 cities.

Table 1. Distances for the 3-cities example

From/To 1 2 3
1 ∞ 26 82
2 134 ∞ 117
3 38 13 ∞

The Integer Programming formulation for this example is:

Minimize 26 x12 + 82 x13 + 134 x21 + 117 x23 + 38 x31 + 13 x32
Subject to x01 + x02 + x03 + x04 = 1

x12 + x13 + x14 = 1
x21 + x23 + x24 = 1
x31 + x32 + x34 = 1
x01 + x21 + x31 = 1
x02 + x12 + x32 = 1
x03 + x13 + x23 = 1
x04 + x14 + x24 + x34 = 1
4x01 + α0 – α1 ≤ 3
4x02 + α0 – α2 ≤ 3
4x03 + α0 – α3 ≤ 3
4x04 + α0 – α4 ≤ 3
4x12 + α1 – α2 ≤ 3
4x13 + α1 – α3 ≤ 3
4x14 + α1 – α4 ≤ 3
4x21 + α2 – α1 ≤ 3
4x23 + α2 – α3 ≤ 3
4x24 + α2 – α4 ≤ 3
4x31 + α3 – α1 ≤ 3
4x32 + α3 – α2 ≤ 3
4x34 + α3 – α4 ≤ 3

 αi ≥ 0 (i = 0,…,4)
 xij ∈ {0,1}, (i = 0,…,3, j=1,…,4, i ≠ j)

The relaxed LP problem substitutes xij ∈ {0,1} by 0≤ xij≤1. The LP optimal solu-
tion is 64 and the dual values for the constraints (not including the bounds) are:
ui={-51,0,0,-13,51,26,51,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}. The surrogate constraint,
the paired constraint and the variables fixed can be seen in Table 2.

Table 2. Surrogate and Paired Constraints

 x01 X02 x03 x04 x12 x13 x14 x21 x23 x24 x31 x32 x34 RHS
cl 0 0 0 0 26 82 0 134 117 0 38 13 0 ≤ 80 UB
sl 0 -25 0 -51 26 51 0 51 51 0 38 13 -13 ≤ 64 LB

cl–sl 0 25 0 51 0 31 0 83 66 0 0 0 13 ≤ 16 UB-LB
xij 0 0 0 0 0 fixed

6 Experimental Results

We tested our procedure with 30 instances generated with a random exponential
distribution that produces specially hard instances [19]. The average values obtained
for every set of five instances with the same number of cities but generated with dif-
ferent seeds, are reported in Table 3. The problems were solved in Pentium III with
1066 MHz and 248 MB in RAM. To obtain the LP solution and to solve the problem
to optimality, we utilized ILOG CPLEX 8.0. The feasible solution used as UB was
obtained with a guided local search defined in terms of neighborhood structure [16].

6.1 Hard Problem Generation for TSP

We developed a generator that produces challenging TSP problems. Following the
ideas presented in Osorio and Glover [19], our approach uses independently exponen-
tial distributions over a wide range to generate the distances between the cities. This
kind of instances takes at least 10 times the number of CPU seconds and 100 times
the number of nodes in the searching tree, required for CPLEX to get optimality than
the instances generated with a random uniformly distribution.

The problem generator used to create the random instances of TSPs is designed as
follows. The distances between the cities, dij, are integer numbers drawn from the
exponential distribution dij=1.0–1000 ln(U(0,1)).

Table 3. Results for Hard Instances

Fixed % Fixed % Rel.Dif Number
of Cities

Best
Known Variables Variables between Soln’s

Optimal
Solution

10 1696 57.8 51.88 7.17 1582
20 2321 174.4 37.67 20.62 1924
30 3095 205.8 20.72 58.78 1949

7 Conclusions

Our procedure is a very easy way to fix binary variables to their bounds in TSP
instances. It can be seen as an effective preprocessing that reduces the binary number
of variables to be fixed in a searching tree. The procedure is simple and utilizes a
local guided search defined in terms of neighborhood structure to get a feasible tour
and surrogate analysis with results from the solution of the LP relaxed problem. The
results obtained shows that a percentage of variables can be fixed in a short amount
of time for many different instances.

References

1. Garey, M. and D. Johnson: Computers and Intractability, W.H. Freeman, San Francisco
(1979)

2. Gass, S. (ed.): Encyclopedia of Operations Research and Management Sciences. Kluwer
Academic Publishers, New York (1997)

3. Glover, F.: Flows in Arborescences. Management Science, 17 (1971) 568-586
4. Glover, F: Surrogate Constraints. Operations Research 16 (1968) 741-749
5. Glover, F.: Surrogate Constraint Duality in Mathematical Programming. Operations Re-

search 23 (1975) 434-451
6. Glover, F., Sherali, H., Lee, Y.: Generating Cuts from Surrogate Constraint Analysis for

Zero-One and Multiple Choice Programming. Computational Optimization and Applica-
tions 8 (1997) 151-172

7. Greenberg, H. and W. Pierskalla, W.: Surrogate Mathematical Programs. Operations Re-
search 18 (1970) 924-939

8. Granot, F., Hammer, P. L.: On the use of boolean functions in 0-1 linear programming.
Methods of Operations Research (1971) 154-184

9. Hammer, P., Padberg, M. and Peled, U.: Constraint Pairing in Integer Programming,
INFOR 13 (1975) 68-81

10. Hooker, J.N.: Logic-based methods for optimization. In: Borning, A. (ed.): Principles and
Practice of Constraint Programming. Lecture Notes in Computer Science Vol. 874
Springer-Verlag, Berlin Heidelberg New York (1994) 336-349

11. Hooker, J.N.: A Framework for combining solution methods. Working Paper, Carnegie
Mellon University (2003)

12. Hooker, J. N., Osorio, M. A.: Mixed Logical/Linear Programming. Discrete Applied
Mathematics 96-97 (1999) 395-442

13. Jeroslow, R. E., and J. K. Lowe: Modeling with integer variables. Mathematical Program-
ming Studies 22 (1984) 167-184

14. Johnson, D.S.: "Local Optimization and the Traveling Salesman Problem", in Proceedings
of the 17th International Colloquium on Automata, Languages and Programming, pp. 446-
461, Springer, Berlin, 1990.

15. Johnson, D. S., McGeoch, L.A.: The Traveling Salesman Problem: A Case Study in Local
Optimization. In: E. H. L. Aarts, E.H.L, Lenstra, J.K. (eds.): Local Search in Combinatorial
Optimization. John Wiley and Sons, Ltd., (1997) 215-310

16. Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang,W., Zverovich, A.: Experimen-
tal Analysis of Heuristics for the ATSP. In: G. Gutin, G. and A. Punnen, A. (eds.): The

Traveling Salesman Problem and its Variations. Kluwer Academic Publishers, Dordrecht
(2002) 445-487

17. Karwan, M. H., Rardin, R. L. Some relationships between Lagrangean and surrogate dual-
ity in integer programming. Mathematical Programming 17 (1979) 230-334

18. Osorio, M.A., Glover, F., Hammer, P.: Cutting and Surrogate Constraint Analysis for
Improved Multidimensional Knapsack Solutions. Annals of Operations Research
117(2002), 71-93

19. Osorio, M.A., Glover, F.: Hard Problem Generation for MKP. Proceedings of the XI
CLAIO. Concepción, Chile (2002)

20. Osorio, M.A., Glover, F.: Exploiting Surrogate Constraint Analysis for Fixing Variables in
both bounds for Multidimensional Knapsack Problems. In: Chávez, E., Favela, J., Mejía,
M., Oliart, A. (eds.): Proceedings of the Fourth Mexican International Conference on Com-
puter Science. IEEE Computer Society. New Jersey (2003) 263-267

21. Salkin, M.: Integer Programmaing. Adisson-Wesley Publishing Company. New York
(1975)

22. Tucker, A.: On Directed Graphs and Integer Programs. IBM Mathematical Research Pro-
jecft Technical Report, Princeton University (1960)

