next up previous
Next: About this document ... Up: Clustering Abstracts of Scientific Previous: Acknowledgments


M. Alexandrov, A. Gelbukh, P. Rosso: An Approach to Clustering Abstracts, A. Montoyo et al. (Eds.): NLDB 2005, LNCS 3513, pp. 275-285, 2005.

A. Booth: A Law of Ocurrences for Words of Low Frequency, Information and control, 1967.

C. Bueno, D. Pinto, H. Jimenez, El párrafo virtual en la generación de extractos, Research on Computing Science Journal, 2005.

R. Cabrera, D. Pinto, H. Jimenez, D. Vilariño, Una nueva ponderación para el modelo de espacio vectorial de recuperación de información, Research on Computing Science Journal, 2005.

H. Jimenez, D. Pinto, P. Rosso, Selección de Términos No Supervisada para Agrupamiento de Resúmenes, In proceedings of Workshop on Human Language, ENC05, 2005.

H. Jiménez-Salazar, D. Pinto & P. Rosso: Uso del punto de transición en la selección de términos índice para agrupamiento de textos cortos, Journal: Procesamiento del Lenguaje Natural, Num. 35, pp. 114-118, 2005.

T. Liu, S. Liu, Z. Chen, W.-Y. Ma:An Evaluation on Feature Selection for Text Clustering, In Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

P. Makagonov , M. Alexandrov, K. Sboychakov: A toolkit for development of the domain oriented dictionaries for structuring document flows, In: Data Analysis, Classification, and Related Methods, Studies in classification, data analysis, and knowledge organization, Springer, 2000, pp. 83-88.

P. Makagonov, M. Alexandrov, A. Gelbukh: Clustering Abstracts instead of Full Texts, Text, Speech and Dialogue (TSD-2004). Lecture Notes in Artificial Intelligence, N 3206, Springer-Verlag, 2004. pp. 129-135.

C. Manning, H. Schütze: Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA, May 1999.

A. Montejo-Ráez, L. A. Ureña-López, R. Steinberger: Text Categorization using bibliographic records: beyond document content, Journal: Procesamiento del Lenguaje Natural, Num. 35, pp. 119-16, 2005.

E. Moyotl, H. Jiménez, An Analysis on Frequency of Terms for Text Categorization, Proceedings of XX Conference of Spanish Natural Language Processing Society (SEPLN-04), 2004.

E. Moyotl-Hernandez, H. Jiménez-Salazar: Enhancement of dtp feature selection method for text categorization. Lecture Notes in Computer Science 3406, Gelbukh (Ed.), pp. 719-722, 2005.

D. Pinto, F. Pérez:Una Técnica para la Identificación de Términos Multipalabra, Proceedings of 2nd. National Conference on Computer Science, Mexico, 2004.

B. Reyes-Aguirre, E. Moyotl-Hernández & H. Jiménez-Salazar.: Reducción de Términos Indice Usando el Punto de Transición, In proceedings of Facultad de Ciencias de Computación XX Anniversary Conferences, BUAP, 2003.

C. J. van Rijsbergen: Information Retrieval, London, Butterworths, 1999.

F. Sebastiani: Machine Learning in Automated Text Categorization, ACM Computing Surveys, Vol. 34(1), pp 1-47, 2002.

K. Shin, S. Y. Han: "Fast clustering algorithm for information organization", En A. F. Gelbukh, editor, CICLing, volumen 2588 de Lecture Notes in Computer Science, pages 619-622. Springer, 2003.

M. Tovar, M. Carrillo, D. Pinto, H. Jimenez, Combining Keyword Identification Techniques, Research on Computing Science Journal, 2005.

R. Urbizagástegui: Las posibilidades de la Ley de Zipf en la indización automática, Research report of the California Riverside University, 1999.

Y. Yang: Noise Reduction in a Statistical Approach to Text Categorization, in Proc. of SIGIR-ACM, pages 256-263, 1995.

G. K. Zipf: Human Behavior and the Principle of Least-Effort, Addison-Wesley, Cambridge MA, 1949.

David Pinto 2006-05-25