
AWK:
The Duct Tape

of Computer
Science Research

Tim Sherwood
UC San Diego

AWK - Sherwood 2

Duct Tape
Research Environment
• Lots of simulators, data, and analysis tools
• Since it is research, nothing works together

Unix pipes are the ducts
Awk is the duct tape
• It’s not the “best” way to connect everything
• Maintaining anything complicated problematic
• It is a good way of getting it to work quickly

• In research, most stuff doesn’t work anyways
• Really good at a some common problems

AWK - Sherwood 3

Goals
My Goals for this talk
• Introduce the Awk language
• Demonstrate how it has been useful
• Discuss the limits / pitfalls
• Eat some pizza

What this talk is not
• A promotion of all-awk all-the-time (tools)
• A perl vs. awk

AWK - Sherwood 4

Outline
Background
Applications
Programming in awk
• Examples

Other tools that play nice
Summary and Pointers

AWK - Sherwood 5

Background
Developed by
• Aho, Weinberger, and Kernighan
• Further extended by Bell
• Further extended in Gawk

Developed to handle simple data-reformatting
jobs easily with just a few lines of code.
C-like syntax
• The K in Awk is the K in K&R
• Easy learning curve

AWK - Sherwood 6

Applications
Smart grep
• All the functionality of grep with added logical

and numerical abilities
File conversion
• Quickly write format converters for text files

Spreadsheet
• Easy use of columns and rows

Graphing/tables/tex
Gluing pipes

AWK - Sherwood 7

Running Awk
Two ways to run it
From the Command line
• cat file | gawk ‘(pattern){action}’

• Or you can call gawk with the file name
From a script (recommended)

#!/usr/bin/gawk –f

This is a comment

(pattern) {action}

…

AWK - Sherwood 8

Programming
Programming is done by building a list
• This is a list of rules
• Each rule is applied sequentially to each line

• Each line is a record

���������	 ���
���� ��

��������	 ���
���� �

�

AWK - Sherwood 9

��������	

64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms

Output

(/icmp_seq/) {print $0}Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…
----dt033n32.san.rr.com PING Statistics----
1281 packets transmitted, 1270 packets received, 0% packet loss
round-trip (ms) min/avg/max = 37/73/495 ms

Input

AWK - Sherwood 10

Fields
Awk divides the file into records and fields
• Each line is a record (by default)
• Fields are delimited by a special character

• Whitespace by default
• Can change with –F or FS

Fields are accessed with the ‘$’
• $1 is the first field, $2 is the second
• $0 is a special field which is the entire line
• NF is always set to the number of fields

AWK - Sherwood 11

��������

time=49
time=94
time=50
time=41

Output

(/icmp_seq/) {print $7}Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…
----dt033n32.san.rr.com PING Statistics----
1281 packets transmitted, 1270 packets received, 0% packet loss
round-trip (ms) min/avg/max = 37/73/495 ms

Input

AWK - Sherwood 12

Variables
Variables uses are naked
• No need for declaration
• Implicitly set to 0 AND Empty String

There is only one type in awk
• Combination of a floating-point and string
• The variable is converted as needed

• Based on it’s use
• No matter what is in x you can always

• x = x + 1
• length(x)

AWK - Sherwood 13

��������

4.9
9.4
5.0
4.1
…

Output

(/icmp_seq/) {
n = substr($7,6);
printf("%s\n", n/10); #conversion

}

Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
64 bytes from 24.30.138.50: icmp_seq=1 ttl=48 time=94 ms
64 bytes from 24.30.138.50: icmp_seq=2 ttl=48 time=50 ms
64 bytes from 24.30.138.50: icmp_seq=3 ttl=48 time=41 ms
…

Input

AWK - Sherwood 14

Variables
Some built in variables
• Informative

• NF = Number of Fields
• NR = Current Record Number

• Configuration
• FS = Field separator

Can set them externally
• From command line use

Gawk –v var=value

AWK - Sherwood 15

Patterns
Patterns can be
• Empty: match everything
• Regular expression: (/regular expression/)

• Boolean Expression: ($2==“foo” && $7==“bar”)

• Range: ($2==“on” , $3==“off”)

• Special: BEGIN and END

AWK - Sherwood 16

“Arrays”
All arrays in awk are associative
• A[1] = “foo”;
• B[“awk talk”] = “pizza”;

To check if there is an element in the array
• Use “in”
• If (“awk talk” in B) …

Arrays can be sparse, they automatically resize,
auto-initialize, and are fast (unless they get
huge)
Multi-dimensional (sort of)

AWK - Sherwood 17

���������

40: 441
50: 216
…
490: 1

Output

(/icmp_seq/) {
n = int(substr($7,6)/10);
hist[n]++; #array

}
END {

for(x in hist)
printf(“%s: %s”, x*10, hist[x]);

}

Program

PING dt033n32.san.rr.com (24.30.138.50): 56 data bytes
64 bytes from 24.30.138.50: icmp_seq=0 ttl=48 time=49 ms
…

Input

AWK - Sherwood 18

Built-in Functions
Numeric:
• cos, exp, int, log, rand, sqrt …

String Functions
• Gsub(regex, replacement, target)
• Index(searchstring, target)
• Length(string)
• Split(string, array, regex)
• Substr(string, start, length=inf)
• Tolower(string)

AWK - Sherwood 19

Writing Functions
Functions were not part of the original spec
• Added in later, and it shows
• Rule variables are global
• Function variables are local

Function MyFunc(a,b, c,d) {
Return a+b+c+d

}

AWK - Sherwood 20

Other Tools
Awk is best used with pipes
Other tools that work well with pipes
• Fgrep: fgrep mydata *.data
• Uniq:
• Sort
• Sed/tr
• Cut/paste
• Jgraph/Ploticus

AWK - Sherwood 21

Jgraph Example

0
50

100
150
200
250
300
350

0 25 50 75 100 125 150
Number of States

A
re

a

AWK - Sherwood 22

My Scripts
Functions to handle hex data
Set of scripts for handling 2-D arrays

Free, documented, and useful (I hope):
http://www-cse.ucsd.edu/~sherwood/awk/

A:1:1.0

A:2:1.2

B:1:4.0

B:2:5.0

Name:1:2

A:1.0:1.2

B:4.0:5.0

Name | 1 | 2

A | 1.0 | 1.2

B | 4.0 | 5.0

AWK - Sherwood 23

Pitfalls
White space
• No whitespace between function and ‘(‘

• Myfunc($1) = ☺
• Myfunc ($1) = �

• No line break between pattern and action
• Don’t forget the -f on executable scripts

AWK - Sherwood 24

Summary
Awk is a very powerful tool
• If properly applied
• It is not for everything (I know)

Very handy for pre-processing
Data conversion
More information and scripts at:
http://www.cs.ucsd.edu/~sherwood/awk

