
TThhee EEssttiimmaattiioonn ooff EEffffoorrtt
BBaasseedd oonn UUssee CCaasseess

JJoohhnn SSmmiitthh,, RRaattiioonnaall SSooffttwwaarree

Rational Software white paper

Table of Contents

The Problem ... 1

Other Work .. 1

Avoiding Functional Decomposition? .. 2

System Considerations ... 2

Assumptions about Structure and Size .. 3

NUMBER OF USE CASES .. 3
STRUCTURAL HIERARCHY... 4
SIZE OF COMPONENTS IN THE HIERARCHY ... 5
USE CASE SIZE ... 6
THE SUBSYSTEM HIERARCHY ... 7
EFFORT PER USE CASE.. 9

Effort Estimation.. 11

HOW MANY USE CASES ARE ENOUGH? .. 12
EFFORT ESTIMATION PROCEDURE ... 12
SIZE ADJUSTMENT OF TABLE .. 13

Summary .. 14

References... 15

The Estimation of Effort and Size Based on Use Cases

1

The Problem
Intuitively, it seems as though it should be possible to form estimates of size and effort that development
will require based on characteristics of the use case model. After all, the use case model captures the
functional requirements, so should there not be a use case based equivalent of function points? There are
several difficulties:

• there are many variations of use case specification style and formality which makes it very difficult to
define metrics – one might like, for example, to be able to measure the length of a use case;

• use cases should represent an external actor’s view of a system, and so a use case for a 500,000 sloc
system is at a quite different level to a use case written for a 5,000 sloc subsystem (Cockburn97
discusses the notion of levels and goals);

• use cases can differ in complexity, both explicitly as written, and implicitly in the required realization;
• a use case should describe behavior from the actor’s point of view, but this can be quite complex,

especially if the system has states (as most do). So to describe this behavior may require a model of the
system (before any realization is done). This can lead to too many levels of functional decomposition
and detail, in an attempt to capture the essence of behavior.

So, is some kind of use case realization necessary to make estimation possible? Perhaps expectations about
estimation directly from use cases are too high and drawing parallels between function points and a notion
of use case points misguided. The calculation of function point counts requires a model of the system
anyway. The derivation of function points from use case descriptions would require a uniformity of level in
use case expression and it is only when the realizations start to emerge that one would have much
confidence in a function point count. Fetcke97 describes a mapping from use case to function points, but
again the level of the use case has to be appropriate for the mapping to be valid. Other methods use
class/object-based metrics as a source, PRICE Object Points, for example (Minkiewicz96).

Other Work
There is a fair amount of work on describing and formalizing use cases – Hurlbut97 has a good survey.
There is a lot less on deriving estimation metrics from use cases. Graham95 and Graham98 contain quite
severe criticism of use case (but I do not fully understand why he believes his ideas and use cases are so far
apart), and propose the idea of ‘task script’ as a way to overcome the problems with use cases – including
their varying length and complexity. Graham’s ‘atomic task script’ is the basis for collection of a ‘task
point’ metric. The problem with an atomic task script is that it is very low-level: according to Graham, it
should ideally be a single sentence, and is not further decomposable using only domain terminology.
Graham’s ‘root tasks’ contain one or more atomic task scripts, and each root task corresponds “to exactly
one system operation: in the class that initiates the plan.”(Graham98). These root tasks seem very much
like low-level use cases to me, and the atomic task scripts like steps in such a use case. Still, the problem
of level remains.

Other work has been done by Karner (Karner93), Major (Major98), Armour and Catherwood (Armour96)
and Thomson (Thomson94). The Karner paper posits a method for calculating use case points but again
assumes that the use cases are expressed in a way realizable by classes (i.e. at a finer level of detail than
subsystems).

So, should we avoid use cases for estimation and rely instead on the analysis and design realizations that
emerge? The problem with this is that it delays the ability to make estimates and will not be satisfactory for
a project manager who has chosen this technology – early estimates will be required and other methods
would then have to be used. It is better for the project manager to be able to obtain estimates early for
planning purposes, and then refine them iteration by iteration, rather than delaying estimation and
proceeding in an unplanned fashion.

What is described in this paper is a framework in which use cases at any level can be used to form an effort
estimate. To present the ideas, some simple canonical structures are described, with associated dimensions

The Estimation of Effort and Size Based on Use Cases

2

and sizes that have some basis in experience. The paper is full of bold (or should that be bald) conjecture
because I can see no other way forward given the lack of work and data in this area. I have drawn on the
‘systems of interconnected systems’ idea in the formulation.

Next, I’ll digress briefly to set down some background thoughts that set me going down this path.

Avoiding Functional Decomposition?
The idea of functional decomposition seems to be an anathema to many in software development. And my
personal experience of functional decomposition taken to an extreme (three thousand primitive transforms
in a very large data flow diagram, five or six levels deep, done with no thought to architecture, except at the
infrastructure level), didn’t leave me feeling sanguine about it either. The problem in this case was not just
with functional decomposition though, but also with the idea of not describing a process until the functional
primitive level is reached, at which point the specification should be less than one page in length.

The result is very hard to understand – how desired behavior required at a higher level emerges from these
primitive transforms is difficult to discern. In addition, it is not obvious how the functional structure should
map to a physical structure that will meet performance and other quality requirements. So the paradoxical
thing was that we decomposed and decomposed until we reached the level at which we could ‘solve the
problem’ (the primitive level), but it was not clear or demonstrable that the primitives working together
actually met goals at higher levels. There was no way in this method to take account of non-functional
requirements. The architecture, in its totality, not just the infrastructure (communications, operating system
etc) should have been evolving alongside the decomposition and each should have influenced the other.

What about the Bauhaus edict that ‘form follows function’? Well there were many good things that flowed
from their functionalist approach to design, but some bad ones too, such as the use of flat roofs everywhere.
If you have regard only to the function of a roof and subordinate design totally to the roof being a cover for
the inhabitants, then the result, at least in certain areas will be unsatisfactory. Such roofs are difficult to
waterproof, they will collect a lot of snow.

Now these problems can be solved, but at greater expense than if you had chosen a different design. So
although it seems trite to say it, form should follow requirements – all of them, functional and non-
functional, and these latter may include aesthetics. The problem for the architect will often be that non-
functional requirements are often poorly stated and much reliance is placed on the architect’s experience of
‘the way things should be’. So functional decomposition is bad if it solely drives the architecture – if
decomposition proceeds several levels down and the functional primitives map one-to-one with ‘modules’
– and define their interfaces.

Considerations like this convinced me that it would not make sense to decompose use cases either down to
some normalized level (that could be realized by a collaboration of classes) in advance of architectural
work. That decomposition will occur is certain if the system is of some size (see Jacobson97) but the
criteria and engineering process for decomposition are important – ad hoc functional decomposition is not
good enough.

System Considerations
Systems Engineers do functional analysis, decomposition and allocation (when synthesizing a design) – but
function is not the only driver for the architecture – teams of specialty engineers will contribute in assessing
alternative designs. IEEE Std 1220, the Standard for Application and Management of the Systems
Engineering Process describes the use of functional decomposition under section 6.3, Functional Analysis
in section 6.3.1 Functional Decomposition, and system product solutions under section 6.5 Synthesis. Of
particular interest are sections 6.5.1 Group and Allocate functions, and 6.5.2 Physical Solution Alternatives.
In section 6.3.1, it says that decomposition is performed to understand clearly what the system must
accomplish, and generally one level of decomposition is sufficient.

The Estimation of Effort and Size Based on Use Cases

3

Note the purpose of functional decomposition is not to shape the system (synthesis does that) but
understand and communicate what the system must do – a functional model is a valid way to do this. In
synthesis, the subfunctions are allocated to solution structures and then the solution is evaluated – taking
into account all other requirements. The difference between this approach and multi-level functional
decomposition, is that at each level one tries to describe the required behaviour and find a solution to
implement it, before deciding whether the behaviour at the next level needs to be further refined, and
allocated to lower level components.

One conclusion from this is that it is not necessary to have hundreds of use cases to describe behaviour at
any one level. The number of external use cases (and associated scenarios) that will adequately cover
behaviour of the thing described – system, subsystem, class – can be quite small. I should say what I mean
by external use case. Take the example of a system composed of subsystems that in turn are composed of
classes. The use cases that describe the behavior of the system and its actors, I’ve called external use cases.
The subsystems may also have their own use cases – these use cases are internal to the system, but external
to the subsystem. The total number of use cases, external and internal, ultimately used to construct a very
large (say 1,000,000+ lines of code) system could be in the hundreds, because systems of that size will be
constructed as systems of systems, or at least systems of subsystems.

Assumptions about Structure and Size

Number of Use Cases

At Rational® Software, we have generally taught that the number of use cases should be small (10-50, say)
and observed that a large number (over 100, say) of use cases may indicate a lapse into functional
decomposition, where the use case is not delivering anything of value to an actor. Nevertheless, we do find
large numbers of use cases in real projects, and not all are ‘bad’ – they cover a mix of levels – for example,
in a Rational internal email, the author quotes an example from Ericsson:

n Ericsson, modeling large portions of a new generation of telephone switch, estimated to
be +600 staff years (at peak, 3-400 developers), 200 use cases (using more than one
level of use cases, refer to “Systems of Interconnected Systems”) (my italics)

For a system of 600+ staff-years (how big is this? 1,500,000 lines of C++ code?), I suspect that the use case
analysis stopped one level above the subsystem (that is, if one defines a subsystem to be 7000-10000 lines
of code), otherwise the count would have been higher still.

Therefore, I’ll stay with the notion that a small number of external use cases is adequate. To match the
structures and dimensions I’ve proposed, I’m asserting that 10 external use cases, each with 30 associated
scenarios1 are adequate to describe behaviour2. If in a real example, the number of use cases exceeds 10,
and they are genuinely external at that level, then the system being described is larger than the
corresponding canonical form. I’ll try to provide some supporting reasoning that these numbers are sensible
later in the paper.

1 In UML1.3 a scenario is described as: “scenario: a specific sequence of actions that illustrates behaviors. A scenario
may be used to illustrate an interaction or the execution of a use case instance”. It is used here in the second sense of
illustrating the execution of a use case instance.
2 Note that this number (of scenarios) is intended to reflect the complexity of a use case – it is not suggested that a
developer must produce and write down 30 scenarios for every use case – rather that 30 scenarios captures most of the
interesting behaviour for a use case, even though there may be many more paths through the use case.

The Estimation of Effort and Size Based on Use Cases

4

Structural Hierarchy

The structural hierarchy proposed is:

4 - SystemOfSystems
3 - System
2 - SubsystemGroup
1 - Subsystem
0 - Class

Class and Subsystem are defined in UML; the larger aggregates are subsystems (containing subsystems) in
UML, I’ve named them differently to make discussion easier. The aggregate subsystemGroup is a CSCI-
like size, for those who know the terminology from military standards like 2167 or 498 (which would make
a subsystem a CSC, and a class a CSU). As I recall, after the arguments in the 2167 days over what Ada
construct should be mapped to what level, when the dust settled, the Ada package was usually mapped to
CSU. I’m not suggesting that systems must rigidly conform to this hierarchy – there will be mixing
between levels – the hierarchy allows me to reason about the effect of size on the effort per use case.

There will be use cases at each level (although probably not for an individual class) – but not a single mass
of incredible detail, rather use cases for each component (i.e. subsystem, subsystemGroup, etc.) at that
level3. I’ve asserted above that there should be 10 use cases for each component at each level – which, if
the use case descriptions average 10 pages gives a potential specification document length of 100 pages
(plus a similar or smaller number more for non-functional requirements), which is a number favored by
Stevens98, and is close to that suggested in Royce98. But why 10 use cases? To arrive at this I reasoned
bottom up, based on what I thought were reasonable sizes for number of classes per subsystem, class size,
operation size and so on. These are collected together for reference with the other assumptions in the table
below.

Operation size 70 slocs
Number of operations per class 12
Number of classes per subsystem 8
Number of subsystems per subsystemGroup 8
Number of subsystemGroups per system 8
Number of systems per systemOfSystems 8
Number of external use cases (per system, subsystem,
etc.)

10

Number of scenarios per use case 30
Pages per use case description4 10

I do not have a great deal of empirical data – there are bits and pieces scattered through texts, Lorentz94
and Henderson-Sellers96 have some data and I have some data from projects in Australia, mainly in the
mil-aerospace domain. In any case, it was important at this stage just to get the framework positioned more
or less in the right place.

3 Some reviewers expressed alarm at the prospect of use cases at four levels, but note that this would only be for a
system of systems, which will typically be very large. In such cases, I would not be surprised to see use cases at four
levels, particularly if the work is done by a prime contractor (for the system of systems), subcontractors (for the
systems) and maybe even sub-subcontractors for the subsystems.
4 Later in the paper this is refined for different classes of systems

The Estimation of Effort and Size Based on Use Cases

5

Size of Components in the Hierarchy

I should say here that I have used lines of code knowing that some folks don’t like the measure. These are
C++ (or equivalent level language) lines of code, so it would be easy enough to backfire to function points.

There must be some relationship between the number of classes in a container and the richness of the
behavior that can be expressed. I chose eight classes/subsystem5, eight subsystems/subsystemGroup, eight
subsystemGroups/system, and so on. Why eight?

1. it’s within 7 plus or minus 2;
2. because at 850 slocs of C++ per class (12 operations of 70 slocs each), it gives a subsystem size of

~7000 slocs – a chunk of functionality/code that is deliverable by a small team (say, 3-7 staff) in 4-9
months, which should harmonize with the iteration length of systems in the range 300,000-1,000,000
slocs (RUP99).6

So, what is the number of use cases that would express the behavior (externally) of eight classes, which are
cohesive and have been co-located in a subsystem? It is not simply the number of use cases but also the
number of scenarios for each use case that determines the richness. Now there is not much in the way of
guidelines for scenarios/use case expansion – Grady Booch indicates in Booch98 that “There’s an
expansion factor from use cases to scenarios. A modestly complex system might have a few dozen use
cases that capture its behavior, and each use case might expand out to several dozen scenarios…”, and
Bruce Powel Douglass says in Douglass99, “…. many scenarios are required to fully elaborate a use case –
typically one dozen to several dozen”. I’ve chosen 30 scenarios/use case – that’s on the low side of ‘several
dozen”, but Rechtin (in Rechtin91) says that engineers can handle 5-10 interacting variables (which for the
purposes of this argument I interpret as 5-10 classes in a collaboration) and 10-50 interactions (which I’ve
interpreted as scenarios). Interpreted this way, multiple use cases are multiple instances of this variable
space.

Thus, 10 use cases, each with 30 scenarios says that 300 scenarios total (which will later lead to ~300 test
cases) are sufficient to cover the interesting behavior of eight classes. Is there any other indication that this
is a reasonable number? If the 80-20 rule of Pareto applies, then 20% of the classes will deliver 80% of the
functionality, and similarly 80% of the functionality will be delivered by 20% of the operations in each
class. Let’s be conservative and say that we need 20% of classes etc, to reach 75% of the capability and
construct a Pareto distribution through this point (Figure 1).

Figure 1: A Pareto-like distribution

5 I believe that this sort of count is representative of analysis – there will be an expansion and refactoring through
design and implementation and the number of classes increases by a factor of three or more, and the operation size (and
class size) decrease correspondingly.
6 For smaller systems (shorter iteration times) the subsystems may be planned to be smaller, or it is always
possible to plan for partial delivery for each iteration – although this needs careful control and may require
the delivery of ‘stubs’.

0

0.2

0.4

0.6

0.8

1

1.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

The Estimation of Effort and Size Based on Use Cases

6

If we want 80% coverage of the behaviour overall, and the Pareto rule applies to number of classes,
operations and scenarios, then we need 93% (0.933 is 0.8) behavioural coverage from each – that is
requiring 50% of each, i.e. 4 classes and 5 operations (= (12 less 2 constructor/destructor)/2). The number
of different traversals of the tree of nodes constructed to represent the execution patterns of four classes
with five operations each could run to many thousands. I constructed one with up to three links from each
node, assuming a hierarchy, with 10 operations (interface operations) at the top, and forming a tree of three
levels. This gives close to 1000 paths or scenarios. So 500 scenarios should give 93% coverage. With 300
scenarios, (using the same assumptions) we should get about 73% coverage. Examining how the tree might
be pruned, to eliminate redundant behavioral specification, suggests even smaller numbers may be adequate
– depending on the algorithm chosen.

Another way of approaching this is to ask how many test cases (derived from scenarios) would one expect
for 7000 slocs of C++. These tests would be anything beyond the unit test level and there is some evidence
from Jones91 and Boeing 777 project (Pehrson96) that this number is safe, at least in that it represents
practice. These sources suggest that between 250-2807 is about right. At a completely different level, the
Canadian Automated Air Traffic System (CAATS) project uses 200 system tests (private communication).

Use Case Size

How ‘big’ should a use case be? Big enough and presenting enough detail so that the desired behavior may
be realized – this will depend on its complexity, internal and external, which will be related to the type of
system – here we run into the problem of how much of the internal action of a system should be described.
To build a system from a description of its external behavior requires, obviously, that outputs be related to
inputs. Now if, for example, the behavior is history sensitive and complex, it will be very difficult to
describe it without some conceptual model of the inside of the system and the actions it takes. Note though,
that this does not necessarily describe how the system is to be constructed internally – any design that
satisfies the non-functional requirements and which matches the behaviour of the model will do.

The definition offered in UML1.3 is: “use case [class]: the specification of a sequence of actions, including
variants, that a system (or other entity) can perform, interacting with actors of the system”. For complex
behavior, this definition can reasonably be taken to include internal actions – unless this is to be postponed
until realization – which is a further step away from the end-user. Business rules should also be
incorporated into use cases to constrain the actors’ behavior (for example, in an ATM system, a bank may
have a rule that no more than $500 may be withdrawn in a single transaction, no matter what the balance of
the account).

With this kind of interpretation, the use case flow of events description can vary between 2-208 pages.
Algorithmically simple systems with simple behavior will obviously not need lengthy descriptions. Perhaps
we can say that simple business systems are characterized at 2-10 pages with a mean of five. More complex
systems, business and scientific at 6-15 pages with a mean of 9 and complex command and control at 8-20
pages with a mean of 12 (these ratios reflect the non-linear relationship of effort to system type for systems
of the same size) although I have no data to back this up. More expressive descriptive forms, state
machines or activity diagrams for example, may take less space – we still tend to emphasize text, so I’ll
ignore the others for now – there is little or no data anyway.

Developments that differ systematically from these sizes should apply a multiplier to the hours per use case
derived from these heuristics (I suggest adding a COCOMO-style cost driver which is the observed mean
size/suggested mean size for the system classification - simple business, more complex, command and
control, etc).

7 From feedback I received from reviewers inside Rational, it is felt that this is more than enough for most non-critical
systems, that these systems will have fewer than 30 scenarios per use case. It would be interesting to have more data
on this and the relationship between numbers of test cases and the number of defects discovered in use.
8 Note, this is not intended to be a hard upper bound, the length of a use case description will follow some kind of
statistical distribution, where the extremes have a lower probability of occurrence.

The Estimation of Effort and Size Based on Use Cases

7

Another aspect of use case size is the scenario count – for example, a use case that is only 5 pages long may
have a complex structure that allows many paths. Again, the number of scenarios needs to be estimated and
the ratio of this to thirty (my initial guess at a number of scenarios per use case) used as a cost driver.

The consequence is that we are asserting that a use case based specification of ~100 pages should be
enough for an external specification at any given level, in addition to the supplementary specification. The
range is from 20-200 pages (these limits are fuzzy). Note though that the total for a system (of
subsystemGroups) at the lowest level is 3-15 pages/ksloc (simple business system) – 12-30 pages/ksloc
(complex command and control). This seems to explain the apparent contradiction between Royce98 Table
14-9 where the page counts for artifacts are quite small and observation of real projects, which, particularly
in defense have produced large amounts of paper. This paper comes from a level of specification which
need not be committed to paper – Royce is right, the important things, like the Vision Statement should be
of the order indicated in the table – 200 pages, for large, complex systems.

The Subsystem Hierarchy

What does this look like as a subsystem hierarchy? Here are the simple ‘standard’ forms I have used. Note
these are the conceptual forms used to realize a system. The actual system boundary is outside a collection
of these forms, and the sum of the external use cases for each is the total of external use cases for the
system; thus a real system may have more than ten external use cases, but the upper bound is not unlimited
as we see later. Note that it is not suggested here that all developments must use four levels of use case in
their description. Smaller systems (<50,000 slocs) will likely use only one or two.

Level One
At level one, we have use cases realized by classes in zero or more subsystems:

Estimating ranges of size for systems at this level (using the notion of 7 plus or minus two):
• from 2 to 9 classes (not formed into subsystems) – 1700 slocs to 8000 slocs, or
• 1 subsystem of 5 classes totaling 4000 slocs up to
• 9 subsystems of 7 classes totaling 53,550 slocs,

with the use cases expressed to be realizable by class instances. That’s a range of 2-76 use cases. These are
fuzzy limits, at least the upper limit is – the probability of building a system this way (at this size), never
expressing desired behavior in some higher level form, should decline to zero at this limit. A larger use
case count may indicate some pathology.

<<Subsystem>>

10 use cases
externally

......... 8 classes each of 850 lines of C++ = ~7,000 slocs

The Estimation of Effort and Size Based on Use Cases

8

Level Two
At the next level, we have a subsystem group of eight subsystems. I think this is equivalent to a computer
system configuration item (CSCI) in defense terminology. At this level, use cases are realized by
collaborations of subsystems:

Estimating ranges of size for systems at this level (using the notion of 7 plus or minus two):
• from 1 subsystemGroup of 5 subsystems of 5 classes totaling 22,000 slocs, to
• 9 subsystemGroups of 7 subsystems each of 7 classes, totaling 370,000 slocs,

that’s a range of 4-66 external use cases. Again, these are fuzzy limits.

Level Three
At the next level, we have a system (of subsystem groups). At this level, use cases are realized by
collaborations of subsystem groups:

Estimating ranges of size for systems at this level (using the notion of 7 plus or minus two):
• from 1 system of 5 subsystemGroups of 5 subsystems of 5 classes totaling 110,000 slocs, to
• nine systems of seven subsystemGroups each of seven subsystems each of seven classes, totaling

2,600,000 slocs. That’s a range of 3-58 external use cases. Again, these are fuzzy limits.

<<System>>

10 use cases
externally

80 use cases
internally at 2nd
level

640 use cases
at 1st level

10 use
cases

10 use
cases

80 use
cases

80 use
cases

<<Subsystem
Group>>

......... 8 subsystemGroups of 56,000 slocs for a total of 448,000 slocs

<<Subsystem
Group>>

<<SubsystemGroup>>

10 use cases
externally

80 use cases
internally at 1st
level

10 use
cases

10 use
cases

<<Subsystem>>

......... 8 subsystems of 7,000 slocs eachfor a total of 56,000 slocs

<<Subsystem>>

The Estimation of Effort and Size Based on Use Cases

9

Level Four
At the next level, we have a system of systems. At this level, use cases are realized by collaborations of
systems:

Estimating ranges of size for systems at this level (using the notion of 7 plus or minus two):

• from 1 system of systems of 5 systems of 5 subsystemGroups of 5 subsystems of 5 classes totaling
540,000 slocs, to

• nine systems of systems of seven systems each of seven subsystemGroups each of seven subsystems
each of seven classes, totaling 18,000,000 slocs. That’s a range of 2-51 external use cases. Again,
these are fuzzy limits.

I suppose larger aggregates are possible, but I don’t want to think about them!

Effort per Use Case

We can get some insight into effort/use case, by estimating the effort for these nominal sizes at each of the
levels. Using the Estimate Professional™ tool9 (based on COCOMO 210 and Putnam’s SLIM11 models),
setting the language to C++ (other cost drivers set to nominal) and calculating effort for each of the
example system types at each nominal size point (assuming 10 external use cases), gives table 1. The
ranges shown in the table for L1 and L2 take account of the complexity of an individual use case –
estimated by analogy with COCOMO’s code complexity matrix. At L2, I believe the variation with
complexity will start to be subsumed into the characterization by system type, so that a higher level
complex command and control system use case, say, will contain a mix of complexities at a lower level.
Plotting these on a log-log scale yields Figure 2.

9 The Estimate Professional tool is supplied by Software Productivity Centre Inc, http://www.spc.ca/
10 See Boehm81 and http://sunset.usc.edu/COCOMOII/cocomo.html
11 See Putnam92

Size
(slocs)

Effort hrs/use case
simple business
system

Effort hrs/use case
scientific system

Effort hrs/use case
complex command
and control system

7000 (L1) 55 (range 40-75) 120 (range 90-160) 260 (range 190-350)
56000 (L2) 820 (range 710-950) 1700 (range 1500-2000) 3300 (range 2900-3900)
448000 (L3) 12000 21000 38000
3584000 (L4) 148000 252000 432000

<<SystemOfSystems>>

10 use cases
externally

80 use cases
internally at 3rd
level

5120 use cases
at 1st level

640 use cases
at 2nd level

10 use
cases

10 use
cases

640 use
cases

80 use
cases

640 use
cases

80 use
cases

<<System>> <<System>>

......... 8 systems of 448,000 slocs for a total of 3,584,000 slocs

The Estimation of Effort and Size Based on Use Cases

10

 Figure 2: Use Case Effort by Size

It can be seen from this that the old Objectory number of 150-350 hrs/use case (10 2.17-10 2.54) fits nicely at
L1, i.e. these are use cases that can be realized with collaborations of classes – so there is some justification
for this number after all. However, it is not adequate for characterizing all projects during analysis – as a
colleague said in an email communication, it’s too ‘flat’.

0

1

2

3

4

5

6

L1 L2 L3 L4

Simple Business

Scientific

Complex Command
and Control

Lower Bound SB

Upper Bound SB

Lower Bound
Scientific

Upper Bound
Scientific

Lower Bound CC

Upper Bound CC

Where the y-axis shows log10 (hours per use case)

The Estimation of Effort and Size Based on Use Cases

11

Effort Estimation
Now real systems will not fit into these convenient slots, so to help reason about how a system should be
characterized we can use the fuzzy limits derived along the way and plot them so:

100 100001000 100000 10000000

L1

L2

L3

L4

LINES OF CODE BY LEVEL

Below 2000 lines
of C++ not considered

Above 20 million
lines of C++ not
considered

Up to 54000

22000-370000

More than 540000

Figure 3: Size Bands for Each Level

From Figure 3, we see that systems up to 22000 slocs are most likely to be described at Level 1, with a use
case count of between 2-30. Higher use case counts at this size may indicate that the granularity of the use
cases is too fine.

Between 22000 and 54000 slocs, there could be a mix of Level 1 and 2 use cases, with a use case count
between 4 (all Level 2) and 76 (all Level 1). As the chart tries to show, these extreme values have low
probability.

Between 54000 and 110000 slocs, it’s possible that a well-structured system could be described entirely at
Level 2, with a use case count of between 10 and 20; the mix may be L1/L2/L3 (1-160 use cases, with these
extremes having extremely low probability).

Between 110000 and 370000 slocs, there’s possibly a mix of Level 2 and Level 3, with a use case count
between 3 (all level 3) and 66 (all level 2).

Between 370000 and 540000 slocs, if described entirely at level 3, there would be a use case count of
between 9 and 12; the mix may be L2/L3/L4 (1-100 use cases, with these extremes having extremely low
probability).

The Estimation of Effort and Size Based on Use Cases

12

Between 540000 and 2600000 slocs, there is possibly a mix of level 3 and level 4, with a use case count of
between 2 (all level 4) and 60 (all level 3).

Above 2600000 slocs, the use case count at Level 4 should rise from ~eight.

How many Use Cases are enough?

Some interesting observations flow from this that support some of the rules of thumb. The question is often
asked – how many use cases are too many? This question usually means how many are too many during
requirements capture. The answer seems to be that more than ~70, even for the largest system, possibly
indicates too fine a granularity prior to design. Between 5-40 is comfortable, but the number by itself,
without consideration of level, cannot be used to estimate size and effort. This is the initial number,
appropriate to a particular level. The hundreds of use cases counts will come if a large supersystem is
decomposed into systems and then subsystems and so on. If use cases were developed until the class level
was reached, then the final count could be hundreds or even thousands (say, ~600 for a 140 staff-year
project, or something like 15 function points/use case). However, this will not occur as a pure use case
decomposition, independent of design. These use cases arise from the process described in Jacobson97 –
where use cases at a system level are partitioned into behavior allocated across subsystems, for which lower
level use cases can be written (with other subsystems as actors).

Effort Estimation Procedure

So how do we proceed in making an estimate? There are some prerequisites: an estimate based on use cases
cannot be made without some understanding for the problem domain, and without already having an idea
of the proposed system size, and some idea of the architecture, appropriate to the stage at which the
estimate is being made.

This first rough cut at an estimate can be done using expert opinion or slightly more formally by the
Wideband Delphi technique (this was invented by the Rand organization in 1948, see Boehm81 for a
description). This will allow the estimator to place the system in one of the size bands in Figure 3. This
placement will suggest a range for the use case count, and indicate the level of expression (L1, L1/L2 and
so on). The estimator must then decide, based on the current knowledge of the architecture, and the
vocabulary of the domain, whether the use cases nicely fit one level, are split discretely, or are a mix of
levels (in the way the flow of events is expressed).

From these considerations it should also become apparent if the data is possibly pathological – for example:
if the Delphi estimate is 600,000 lines of code (or function point equivalent), and there has been little
architectural work, so that not much is known yet about the system structure – Figure 3 suggests that the
use case count should be between 2 (all level 4) and 14 (all level 3). If the use case count is actually 100,
then the use cases may have been prematurely decomposed, or the Delphi estimate is a long way out.

Continuing this example: if the actual use case count is 20, and the estimator decides that these are all L3;
further that the use case length is on average 7 pages, and the system is of type complex business, then the
hours per use case (from Figure 2) is 20,000. This has to be multiplied by 7/9 to account for the apparent
lower complexity (based on use case length). So the total effort by this means is 20*20000*(7/9) =
~310,000 staff-hours, or 2050 staff months. According to Estimate Professional, 600,000 lines of C++
code, for a complex business system, requires 1928 staff months. Therefore, in this concocted example
there is good agreement.

If the actual use case count was 5, and the estimator decides these are split 1 at L4 and 4 at level 3, further,
the L4 use case is 12 pages and the L3 use cases average 10 pages, then the effort is
1*250,000*12/9+4*21000*(10/9) = ~2800 staff months. This seems to suggest the Delphi estimate perhaps
needs to be revisited, although given that a major piece of the system is still only understood at a very high
level, the error bounds are greater anyway.

The Estimation of Effort and Size Based on Use Cases

13

If the original Delphi estimate had been 100,000 lines of C++, the indication from Figure 3 is that the use
cases should be at L2 and there should be about 18 of them. If there were actually 20, as in the first
example, application of the method without considering the actual use case level will give a badly flawed
result, if the Delphi estimate is badly wrong.

The estimator must check, therefore, that the use cases are really at the suggested level of abstraction (L2)
and can be realized by a collaboration of subsystems, and the use cases are not all really at L3 – although
the Wideband Delphi method isn’t usually quite that bad (i.e.predicting 100,000 when the actual is closer to
600,000). The point is though that this method of estimation cannot proceed with confidence, without the
construction of some notional or conceptual architecture, which aligns with the use case level. For an
estimator very experienced in the domain, the model may be a mental one which enables a judgement of
level to be made, for a less experienced estimator and team, it is wise to do some architectural modeling to
see how well the use cases can be realized at a particular level.

The count for a mixed expression use case (that is, a mix of Level N and Level N+1) should be counted as
n=8(fractional distance between the two levels) of the lower bound use case type. Thus, a use case assessed at 50% L1 and
50% L2 should be counted as 80.5 = 3 L1 use cases to get the overall count. A use case assessed at 30%
between L2 and L3 should be counted as 80.3 L2 use cases = two L2 use cases. A use case assessed at 90%
of the way between L2 and L3 should be counted as 80.9 = 7 L2 use cases.

Size Adjustment of Table

There is actually a further adjustment that needs to be made to the individual hours/use figures to take
account of the overall size – the effort figures are appropriate at each level in the context of systems of that
size. Thus at L1, in Table 1, 55 hrs per use case will apply when building a system of 7000 slocs. The
actual number will depend on the total system size – so if the system to be built is, say, 40,000 slocs and
there are 57 level 1 use cases describing it, the effort will not be 55*57 hrs for a simple business system but
(40/7)0.11 * 55 = 66 hrs/use case. This is based on the COCOMO 2 relationship of size to effort. According
to the COCOMO model, Effort = A * (Size)1.11, where
• Size is ksloc
• A will have cost drivers factored in
• Project scale factors are nominal (giving 1.11 for the exponent)

Note that these calculations could be factored into a tool like Estimate Professional to eliminate the
calculation burden; they are shown here for completeness.

Therefore the effort per ksloc, or per unit if you will, equals A* (Size)1.11/Size, which gives A* (Size)0.11.
Thus the ratio of effort/unit at size S1, to the effort/unit at size S2, is (S1/S2)0.11.

In addition to the Delphi estimate, the system size can be calculated roughly from the use case count at the
various levels: if there are N1 use cases at level 1, N2 at level 2, N3 at level 3 and N4 at level 4, then the
total size is [(N1/10)*7 + (N2/10)*56 + (N3/10)*448 + (N4/10)*3584] ksloc. Therefore, we can calculate
the effort multipliers for each of the effort/use case figures in Table 1, by dividing this total size by the size
for each level (in ksloc) shown in column one of Table 1.

Thus, at level 1, (0.1*N1 + 0.8*N2 + 6.4*N3 + 51.2*N4)0.11.
At level 2, (0.0125*N1 + 0.1*N2 + 0.8*N3 + 6.4*N4)0.11.
At level 3, (0.00156*N1 + 0.0125*N2 + 0.1*N3 + 0.8*N4)0.11.
At level 4, (0.00002*N1 + 0.00156*N2 + 0.0125* N3 + 0.1*N4)0.11.

Clearly, at level 4 for example, the number of level 1 use cases has a tiny effect compared with the number
of level 3 or level 4.

The Estimation of Effort and Size Based on Use Cases

14

Summary
A framework for estimation based on use cases has been presented. To make the presentation more
concrete, some values were chosen for the framework parameters, which, it is argued, are not wildly in
error. As always, such conjecture should be tested against reality and the parameters reestimated, as data is
gathered. The framework takes account of the idea of use case level, size and complexity, for different
categories of system and does not resort to fine-grain functional decomposition. To ease the burden of
calculation, it is possible to construct a front end to a tool such as Estimate Professional, to provide an
alternative method of inputting size, based on use cases.

For comments and feedback on this white paper, please contact John Smith, jsmith@rational.com

The Estimation of Effort and Size Based on Use Cases

15

References

1. Armour96: Experiences Measuring Object Oriented System Size with Use Cases, F. Armour, B.
Catherwood, et al., Proc. ESCOM, Wilmslow, UK, 1996

2. Boehm81: Software Engineering Economics, Barry W. Boehm, Prentice-Hall, 1981
3. Booch98: The Unified Modeling Language User Guide, Grady Booch, James Rumbaugh, Ivar

Jacobson, Addison-Wesley, 1998
4. Cockburn97: Structuring Use Cases with Goals, Alistair Cockburn, Journal of Object-Oriented

Programming, Sept-Oct 1997 and Nov-Dec 1997
5. Douglass99: Doing Hard Time, Bruce Powel Douglass, Addison Wesley, 1999
6. Fetcke97: Mapping the OO-Jacobson Approach into Function Point Analysis, T. Fetcke, A.

Abran, et al., Proc. TOOLS USA 97, Santa Barbara, California, 1997.
7. Graham95: Migrating to Object Technology, Ian Graham, Addison-Wesley, 1995
8. Graham98: Requirements Engineering and Rapid Development, Ian Graham, Addison-Wesley,

1998
9. Henderson-Sellers96: Object-Oriented Metrics, Brian Henderson-Sellers, Prentice Hall, 1996
10. Hurlbut97: A Survey of Approaches For Describing and Formalizing Use Cases, Russell R.

Hurlbut, Technical Report: XPT-TR-97-03, http://www.iit.edu/~rhurlbut/xpt-tr-97-03.pdf
11. Jacobson97: Software Reuse – Architecture, Process and Organization for Business Success, Ivar

Jacobson, Martin Griss, Patrik Jonsson, Addison-Wesley/ACM Press, 1997
12. Jones91: Applied Software Measurement, Capers Jones, McGraw-Hill, 1991
13. Karner93: Use Case Points - Resource Estimation for Objectory Projects, Gustav Karner,

Objective Systems SF AB (copyright owned by Rational Software), 1993
14. Lorentz94: Object-Oriented Software Metrics, Mark Lorentz, Jeff Kidd, Prentice Hall, 1994
15. Major98: A Qualitative Analysis of Two Requirements Capturing Techniques for Estimating the

Size of Object-Oriented Software Projects, Melissa Major and John D. McGregor, Dept. of
Computer Science Technical Report 98-002, Clemson University, 1998

16. Minkiewicz96: Estimating Size for Object-Oriented Software, Arlene F. Minkiewicz,
http://www.pricesystems.com/foresight/arlepops.htm, 1996

17. Pehrson96: Software Development for the Boeing 777, Ron J. Pehrson, CrossTalk, January 1996
18. Putnam92: Measures for Excellence, Lawrence H. Putnam, Ware Myers, Yourdon Press, 1992
19. Rechtin91: Systems Architecting, Creating & Building Complex Systems, E. Rechtin, Prentice-

Hall, 1991
20. Royce98: Software Project Management, Walker Royce, Addison Wesley, 1998
21. RUP99: Rational Unified Process®, Rational Software, 1999
22. Stevens98: Systems Engineering – Coping with Complexity, R. Stevens, P. Brook, et al., Prentice

Hall, 1998
23. Thomson94: Project Estimation Using an Adaptation of Function Points and Use Cases for OO

Projects, N. Thomson, R. Johnson, et al., Proc. Workshop on Pragmatic and Theoretical Directions
in Object-Oriented Software Metrics, OOPSLA ’94, 1994

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900
E-mail: info@rational.com
Web: www.rational.com

For International Offices: www.rational.com/corpingo/worldwide/location.jtmpl

Rational, the Rational logo are registered trademarks of Rational Software Corporation in the United States
in other countries. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.
Made in the USA.

 Copyright 1999 by Rational Software Corporation

TP-171 10/99. Subject to change notice.

